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Abstract

There is increasing evidence indicating that nutritional genomics represents a promise to improve public health. This goal will be reached by highlighting the
mechanisms through which diet can reduce the risk of monogenic and common polygenic diseases. Indeed, nutrition is a very relevant environmental factor
involved in the development and progression of metabolic disorders, as well as other kind of diseases. The revolutionary changes in the field of genomics have
led to the development and implementation of new technologies and molecular tools. These technologies have a useful application in the nutritional sciences,
since they allow a more precise and accurate analysis of biochemical alterations, in addition to filling fundamental gaps in the knowledge of nutrient–genome
interactions in both health and disease. Overall, these advances will open undiscovered ways in genome-customized diets for disease prevention and therapy.
This review summarizes the recent knowledge concerning this novel nutritional approach, paying attention to the human genome variations, such as single-
nucleotide polymorphisms and copy number variations, gene expression and innovative molecular tools to reveal them.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

In the last decade, the human genome sequencing has allowed the
identification of about 1000 mutations responsible for human
diseases, and some disease-causing genes accounting for human
multifactorial diseases, such as type 2 diabetes mellitus (T2DM),
obesity, cardiovascular diseases (CVD) and cancer, have been un-
equivocally linked to the diseases [1–3].

Single-nucleotide polymorphisms (SNPs) in the human genome
[4,5], potential sites for phenotypic variability, confer to individuals
their uniqueness, due to the genome plasticity and to the genes–
environment interaction [6,7]. Currently, although several SNPs in key
genes have been associated with chronic metabolic disorders, a few
association studies unambiguously confirm their involvement in the
onset of these diseases [8,9]. An SNP, and a combination of them
(haplotype), are not often responsible by themselves for disease
phenotype, but they are likely to account for the genetic predispo-
sition to develop the disease [10]. Indeed, although SNPs may cause
some pathological conditions, the resulting phenotype is often
influenced by environmental factors [11], which exert a selective
pressure on the genomes and contribute to their evolution [12].
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In the field of genetics, the term environment indicates all
nongenetic contributions to variation for a phenotypic trait. The
concept of “environment” includes all the factors possibly contribut-
ing tomodify— ameliorating or worsening— a phenotype or acting as
trigger for the initiation of a pathology. These factors can be briefly
categorized in (1) exogenous and random (e.g., acute or chronic
exposure to toxins, industrial chemicals, sunlight radiation, allergens,
pollution, bacteria, etc.) and (2) endogenous and volitional (e.g.,
lifestyle, athletic training, caloric intake, alcohol and tobacco
consumption, sedentary behavior, alteration of sleep cycle, etc.)
[13]. Gene–environment interactions are considered as the different
effects of the same environment on individuals with different
genotypes or the differential phenotypic effects of environment on
individuals with the same genotype [14].

For instance, it is known that common forms of overweight and
obesity are likely to be polygenic, due to gene–gene and gene–
environment. It has been suggested that “silent” gene variants are
now contributing to the obesity epidemic through permissive
interaction with an “obesogenic” environment, fuelled by energy
dense and easily available foodstuffs [15].

Loos and Bouchard [16] hypothesized the presence of four
categories of gene–environment interactions, possibly contributing
to the severity of obesity. The first level is a monogenic form, affecting
a few individuals whose obesity is not dependent on the exposure to a
permissive environment. Conversely, another category consists of
individuals that, despite a permissive environment, are genetically
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resistant to obesity. The remaining two levels of obesity comprise
common or polygenic forms, including individuals with a strong or
slight genetic susceptibility to develop the disease, but whose
expression will depend on the exposure to “obesogenic” environment
(i.e., diet). The canonical genome-centric approach usually fails to
take into account a very relevant variable in the expression of genetic
information and probably a major contributor to disease develop-
ment, namely, the dietary components [1].

The interactions between the genetic background and the
“obesogenic” environment are extremely dynamic, beginning at
birth or even before and pursuing throughout the adulthood, and
the food is an environment factor we are permanently exposed to,
from conception to death. Therefore, diet represents a relevant
environmental factor able to modulate gene expression during
lifetime, although a long period of exposure to a “disease-
predisposing” diet is necessary to develop the phenotype [17].
Indeed, a phenomenon known as metabolic imprinting or program-
ming, referred to the embryo susceptibility to nutrient-induced
adaptations in gene expression, has been described [18]. These
metabolism-associated changes occur during embryonic develop-
ment and can persist throughout the adulthood, predisposing to
metabolic diseases [19].

Moreover, the relevance of the hormonal component should be
considered as a major determinant in gene–diet interaction. This
consideration is essential for the clinicians aimed to design a gene-
based and age-/sex-specific dietary recommendation.

2. Nutrients, nutrition and genes

Nutrition is a very relevant environment factor that exerts its
effect on the genetic background impairing or improving the
likelihood to develop metabolic disorders [20]. From a public health
perspective, the most practical translation of nutrition research
consists in defining dietary recommendations to prevent the disease
and to promote optimal health. To this purpose, dietary guidelines
traced by the World Health Organization have been implemented to
improve the health of individuals at high risk to develop pathological
conditions (i.e., CVD, hypertension, obesity and diabetes).

In the era of the “omics,” the nutrition science has introduced the
terms nutrigenomics and nutrigenetics. To date, even though these
terms are often used with the same meaning throughout the
literature [21–25], the nutrigenetics and nutrigenomics should refer
to different branches of the nutritional research. The nutrigenetics,
also termed personalized nutrition, emphasize on the close “cause–
effect” relationship between the nutritional regimen, which acts in
different ways on the genetic background, and the development of a
metabolic disorder [23]. The major goal of nutrigenetics includes the
identification and characterization of genes, and nucleotide variants
within these, that are associated with (or account for) the differential
responses to nutrients. On the other hand, the nutrigenomics mainly
focuses on the effect of nutrients, bothmicro- (vitamins andminerals)
and macronutrients (carbohydrates, fats and proteins), on the
genome, proteome and metabolome.

The “gene–nutrient interaction” notion could be intended in
different ways: (1) an SNP that regulates the effect of a dietary
component on a specific phenotype, that is, obesity and plasma lipid
concentrations; (2) a dietary component that modulates the effect
of a genetic variant on a phenotypic trait; (3) dietary components
that directly or indirectly act on DNA and gene expression at a
molecular level.

Moreover, the nutrients directly or indirectly affect a disease
phenotype by acting at different molecular levels. Indeed, dietary
compounds may alter gene expression through modifications in the
rate of transcription, affecting in turn the translation of such a protein,
andmay alter physiological posttranslational processes (Fig. 1). Taken
together, these modifications — occurring at different cellular levels -
may dramatically affect physiological processes such as metabolism,
cell cycle/differentiation and inflammation, all of which are of great
relevance in the disease onset.

2.1. Polymorphisms, haplotypes and nutrients

Although it has been postulated for decades that a genetic
component acts in the differences to interindividual dietary response
to a specific nutritional regimen [26], only in recent years, the effects
of nutrition on human diseases have been demonstrated [23].

Nevertheless, past and also current dietary guidelines did not
consider the dramatic differences in the individual response to
variations in the nutrient intake, greatly affecting the efficacy of
dietary recommendations. Moreover, the presence of SNPs within
key genes has been shown to alter crucial pathways, affecting
some physiological cellular activities and leading to increased
susceptibility toward disease onset (see examples in Table 1).
Indeed, several reported discrepancies in the response to disease
outcome mainly derive from failing to account for the interindi-
vidual genetic differences.

For instance, inconsistencies in the response to dietary fiber
intake have been explained on the rational basis of the presence of a
common SNP, M235T, in the angiotensinogen gene. This nucleotide
variation was shown to be directly linked to blood pressure
variations after consumption of a dietary fiber [27]. The response
to another very common dietary component, such as caffeine, may
be strictly related to the presence of SNPs. Indeed, Rapuri et al. [28],
during a study aimed to unravel the role of caffeine as a risk factor
for bone loss in elderly women, found that women homozygous for
TaqI SNP of the vitamin D receptor gene (VDR) with a caffeine intake
greater than 300 mg/day had significantly higher rate of bone loss
compared to control subjects [28,29]. It was also demonstrated that
the caffeine dose-dependently decreases VDR protein expression
and alkaline phosphatase enzyme activity in the osteoblasts. A
reduced calcium absorption and retention was also shown in
postmenopausal women, leading to a decrease in the bone mineral
density (BMD) [30,31] and increased risk of hip fracture [32,33]. Two
well-known VDR gene polymorphisms, BsmI and poly-A, have been
shown to affect the response to various dietary components leading
to reduced BMD and osteoporosis. Moreover, they possibly represent
a disease risk for their association with diet and colorectal cancer
risk [34–36].

Other inconsistencies among clinical studies have been explained
considering that dietary factors could modulate the effect of a
genetic polymorphism. In this regard, some genetic variants in lipid-
related genes have been studied for the past two decades,
unfortunately resulting in a plethora of reports with different and
controversial extents.

The gene encoding for apolipoprotein A-I, APOA1, is highly
polymorphic, and a specific SNP in its promoter, 75G→A [39,40],
has extensively been studied in association with high-density
lipoprotein (HDL) cholesterol concentrations with conflicting results
[41–43]. A study involving men and women fed with diets rich in
saturated, monounsaturated or polyunsaturated fatty acids (PUFA)
demonstrated that lower low-density lipoprotein (LDL) cholesterol
levels were more marked in A allele carrier women than in
homozygous for the G allele, but no effect was evident in men [44].
In another cohort of patients from the Framingham Offspring Study, a
significant interaction in terms of HDL cholesterol concentration was
observed between APOA1 genotype and PUFA intake [45]. In women
carrying the A allele, HDL cholesterol concentration significantly
increased with increased PUFA intake. An opposite effect was
observed in women homozygous for the G allele (HDL cholesterol
concentration decreased as PUFA intake increased). These evidences



Fig. 1. Nutrients and their contribution to phenotype changes. Schematic representation of themolecular targets of dietary factors, and their contribution to establish such a phenotype.
Nutrients may have direct and indirect interactions at different cellular levels. For instance, in the presence of SNPs in key metabolic enzymes, dietary compounds may be not
completely metabolized or may detrimentally accumulate within the cells, or nutrients may directly affect gene transcription (hypo- or hypermethylation) and protein translation. An
altered catabolism of nutrients, generating a variety of metabolites, may also give a contribution to the onset of disease phenotypes acting through global effects on several cellular
processes, including cell differentiation/proliferation and inflammation.
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show the possibility to provide tailored nutritional advices on the
basis of genotype: women carrying the A allele should improve their
PUFAs intake to increase HDL cholesterol hematic levels and to reduce
the CVD risk, whereas G/Gwomen should receive the opposite advice.

Moreover, the interaction between TaqIB polymorphism, within
CETP gene, and alcohol consumption, in relation to plasma HDL
concentrations, was also investigated [20]. The results have clearly
shown that alcohol consumption can increase HDL concentrations in
B1B1 individuals in a dose-dependent manner. Nucleotide variations
within the apolipoprotein C3 (APOC3)— a primary determinant of the
lipase-mediated catabolism and receptor-mediated clearance of
triglycerides (TGs), rich lipoproteins — have been studied for their
direct link to nutrition supplementation. Indeed, SNPs within the
regulatory region of APOC3, such as −2854TNG, −482CNT and
-455TNC, have been shown to reduce the expression levels, playing
crucial roles in TG metabolism [46,47]. The absence, or the strong
reduction of circulating ApoC3, a natural lipoprotein lipase (LPL)
inhibitor, enhances fatty acid uptake from plasma TG in adipose
tissue, leading to higher susceptibility to diet-induced obesity. Indeed,
also an SNPwithin LPL-encoding gene, 1595 CNG, was associated with
significantly lower TG levels (Table 1) [48].

Other crucial metabolic pathways such as antioxidant, detoxifica-
tion and inflammation have been recently studied for their high
susceptibility to the nutritional supplementation. In particular,
oxidative damage, caused by reactive oxygen species (ROS) and
other free radicals, is known to be involved in prostatic carcinogen-
esis. Dietary selenium (Se), a component of glutathione peroxidase in
themanganese superoxide dismutase (MnSOD) antioxidant pathway,
is indirectly linked to the antioxidant activity of this enzyme. Indeed,
it has been shown that a particular SNP in the SOD2 gene, Ala16Val,
may alter MnSOD activity. Particularly, AA carriers have high levels of
MnSOD expression, possibly leading to enzyme imbalance that, in
turn, may induce toxicity if glutathione peroxidase activity is reduced
due to low Se intake, or whether antioxidants are in high demand due
to particular lifestyle factors, such as smoking [51]. Other examples of
SNPs within SOD3 and NOS3 genes, with major effects on the
antioxidant status, are reported in Table 1.

Consumption of vegetables and fresh fruit and the presence of
SNPs in the detoxifying enzyme glutathione S-transferase M1
(GSTM1) and within other metabolism-related genes have been
shown to modulate cancer risk (Table 1). In particular, strong inverse
association was found between vegetable consumption and dietary
intake of antioxidants and DNA adduct levels, only in GSTM1-null
subjects [52], showing that a diet rich in antioxidants — to prevent or
reduce DNA adduct formation— is useful only for subjects lacking the
detoxifying activity of GSTM1 isoenzyme (∼50% of the general
population). Similar effects have also been demonstrated for GSTT1
and GSTP1 null subjects (Table 1).

Inflammation is another crucial pathway greatly affected by the
presence of nucleotide variations in key genes and by nutritional
advices (Table 1). For instance, −308A SNP in the promoter of TNFA
gene alters its expression levels, leading to high susceptibility to
develop different types of cancer, such as stomach, invasive cervical
cancer (ICC) and hepatocellular carcinoma (HCC) and also chronic
and severe inflammatory diseases (Crohn and CVD). Single-nucleo-
tide polymorphisms in the regulatory region of interleukin-6 (IL-6), a
proinflammatory cytokine and major mediator of the acute phase
response, influence transcription both in vitro and in vivo (Table 1).
These variants have been associated with the increased risk of
coronary heart disease. The effects of gene variations within both
coding and regulatory regions of these genes can be modulated
increasing dietary levels of n-3 PUFAs (omega-3 fats).

2.2. Effects of dietary components on gene expression

To date, it is widely accepted that most of the effects of the
nutrition on human metabolic diseases and, in turn, on human health
cannot be easily explained without a complete knowledge of the
molecular mechanism underlying the nutrients' action [23]. In
particular, the evidence shows that understanding how nutrition
affects the metabolic homeostasis, influencing different cellular
metabolic pathways, is a crucial event. Roughly investigating the
role of gene–gene (epistasis) and gene–environment interactions will
represent a reliable challenge for better elucidating the molecular
basis of the multifactorial metabolic disorders [59,60].

The dietary compounds may affect different cellular processes.
Therefore, short peptides in the diet, particularly tri- and tetrapep-
tides derived from food proteins, have been shown to inhibit the
angiotensin-converting enzyme [61–63]. Other tripeptides with a
Pro–His–His sequence have revealed an extraordinary antioxidant



Table 1
Single-nucleotide polymorphisms with an effect on metabolism and nutrition phenotypes

Pathway Rationale Genes SNPs Disease/trait Outcome/association References

Blood pressure Increased fiber intake improves
plasma lipoprotein profile, and has
controversial effects on blood
pressure. Discrepancies may be due to
SNPs in the angiotensinogen gene
(AGT), which alter blood pressure in
response to dietary fiber intake.

AGT M235T Hypertension T235 homozygotes have
higher plasma mean
angiotensinogen levels
and systolic and diastolic
blood pressure

[27]

Bone maintenance VDR is crucial in bone metabolism.
SNPs associate with high rate of bone
loss. Other studies show gene–diet
effects involving Ca2+ and D vitamin.

VDR C TaqI T
T BsmI C
poly-A

Low BMD TaqI associates with
caffeine-related risk of
bone loss
BsmI influences skeletal
response to vitamin D
poly-A is a risk factor
for osteoporosis

[28–38]

Lipid metabolism SNPs within these genes, involved
in lipid metabolism and/or transport,
affect plasma cholesterol and TG
levels in combination with dietary
fat intake.

PPARG
CETP
LPL
APOC3
APOA1

Pro12Ala
TaqI
1595CNG
-2854TNG
-75GNA

TG and cholesterol
HDL and TG
TG
TG
LDL

Ala12 associates with
higher food efficiency
TaqI increases plasma
CETP levels, reduces HDL
1595G associates with low
TG and low CVD risk
2854G associates with low
plasma TG levels
−75A associates with low
LDL levels

[20,39–50]

Antioxidant activity SOD enzymes are free radical
scavengers with important antioxidant
activity and SNPs in these genes
increase ROS production.

SOD2
SOD3
NOS3

Ala16Val
760CNG
894GNT

NSCC
Low antioxidant
defense
CAD

Ala16 associates with higher
risk of prostate cancer
760G allele associates
with ischaemic heart disease
Associates to increased
risk of CAD

[51]

Detoxification These enzymes are responsible of
phase II detoxification and of the
DNA adducts' levels after
consumption of cruciferous
vegetables.

GSTM1
GSTT1
GSTP1

Deletion
Deletion
313ANG
341CNT

Lung cancer Deletions in GSTM1/GSTT1
associate with reduced risk
of developing lung cancer
when consumption of
cruciferous vegetables
is high

[52–54]

Inflammation SNPs in TNFα and IL-6 have been
shown to be proinflammatory.
The effect can be modulated
increasing dietary levels of
omega-3 fats (fish oil).

TNFα
IL-6

−308GNA
−174GNC
−634GNC

High inflammatory
activity

−308A SNP alters TNF
expression, and associates
with cancer susceptibility
(stomach, ICC, HCC) and
inflammatory diseases
(Crohn and CVD)
SNPs increase IL-6 levels,
predisposing to CVD risk

[55–57]

Folic acid metabolism SNPs in the genes involved in folic
acid metabolism affect plasma
homocysteine levels and the balance
between DNA methylation and
synthesis of nucleotides.

MTRR
MTR
MTHFR

66ANG
2756ANG
677CNT
1298ANC

Low plasma HCY High risk of spina bifida and
risk for having
Down syndrome child
Important genetic risk
factors in CVD and cancer
predisposition

[58]

NSCC, neck squamous cell carcinoma; CAD, coronary artery disease; HCY, homocysteine.
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activity [64]. Dietary components were also demonstrated to alter
DNA transcription and gene expression via direct or indirect
mechanisms. Indeed, food-derived chemicals can follow different
but convergent ways: (1) they can be metabolized by primary or
secondary metabolic pathways or (2) can enter the cells and act as
receptor's ligands altering the intracellular signaling pathways [1,65].
A prolonged fatty acid-rich diet — leading to highest rates of β-
oxidation — can alter the intracellular energetic homeostasis,
affecting gene expression through changes in the NAD+/NADH ratio
[66]. Moreover, it has been described that the chronic consumption of
a maternal high-fat diet results in a 3-fold increase of fetal liver TGs,
correlated to nonalcoholic fatty liver disease [67]. These changes are
followed by a statistically significant hyperacetylation of fetal hepatic
tissue, suggesting that a caloric-dense maternal diet — leading to
obesity — epigenetically alters fetal chromatin structure in primates
via covalent modifications of histones.

Since it has been demonstrated that dietary chemicals alter
epigenetic events, they represent a vivid example of how diet can
influence biological processes and phenotypes [68]. Particularly, the
DNA methylation status (both hypo or hyper) — crucial in epigenetic
events — depends on bioactive food components such as alcohol,
folate, fiber, genistein, selenium, zinc and others (see descriptions in
Table 2) [66,69,85,86]. DNA methylation can be directly affected by
dietary factors, acting in at least four ways. First, dietary components
(folate, methionine, choline) may influence the availability of methyl
groups, needed for S-adenosyl-L-methionine formation. Second,
dietary factors may modify the usage of methyl groups by processes
including shifts in DNAmethyltransferase activity. A thirdmechanism
may concern the enzymatic activity of DNA demethylation. In the
latter hypothesis, different DNA methylation patterns, related to
different foods, may influence the response to a specific bioactive food
component through a feedback process [69].

Moreover, some dietary chemicals are directly involved in the
modification of gene expression acting as exogenous ligands for a
class of nuclear receptors of the transcription factor superfamily
(discussed below).



Table 2
Dietary chemicals and DNA methylation

Dietary chemical Mechanism of action Phenotype/
outcome

Reference

Alcohol Chronic consumption affects
folate metabolism, altering
DNA methylation.

Cancer
susceptibility

[69–71]

Arsenic Competes with cytosine
DNA methyltransferase
and selenium for methyl
donation from
S-adenosil-l-methionine.

Global
hypomethylation
in liver

[72]

Choline Deficiency in the diet has
been associated with
decreased tissue
S-adenosyl-l-methionine.

Hepatic steatosis,
cirrhosis and
hepatic
tumorigenesis

[73]

Folate Its deficiency has complex
effects on DNA methylation
depending on cell type,
organ and development
stage. Depletion alone is a
sufficient perturbing force
to diminish SAM pools.

Cancer
susceptibility

[74]

Genistein Dietary genistein can
mitigate tumorigenic
processes via promoter
methylation modulation
of gene expression.

Mitigates
tumorigenesis

[75]

Lycopene Lycopene has direct DNA
demethylating activity. It
mitigates tumorigenic
processes via promoter
methylation modulation
of gene expression.

Mitigates
tumorigenesis

[76]

Methionine Its deficiency decreases
tissue SAM, resulting in
global DNA
hypomethylation,
and HCC in rodents.

HCC [73,76,77]

Nickel Environmental carcinogen;
induces de novo methylation
of tumor suppressor genes.
Suppressive effect on
histone H4 acetylation
in mammalian cells.

Increased cancer
susceptibility

[78,79]

Selenium Its deficiency decreases
DNA methylation. Low
intake influences the activity
of selenoproteins, causing
changes in mRNA levels
for the encoding genes.

CVD, cancer
susceptibility

[80–82]

Vitamins Vitamins (B2, B6 and B12)
are necessary cofactors in the
one-carbon (methyl group)
metabolism.

A deficiency affect
several metabolic
pathways

[83,84]
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2.3. Nuclear receptors and PPARG gene: the nutrient sensors

It is widely assumed that micro- and macronutrients play a key
role in the regulation of metabolic pathways and energetic homeo-
stasis, altering the expression of crucial genes. Indeed, themembers of
the transcription factor superfamily are the main responsible
molecules through which the nutrients may influence gene expres-
sion [23]. Among these transcription factors, the nuclear hormone
receptors superfamily, consisting of about 50 members in the human
genome, represents the most important group of molecular effectors
of fatty acids and their derivates.

The nuclear hormone receptors have important roles in the
regulation of several physiological processes, such as nutrient
metabolism, cell proliferation and differentiation [87]. The nutrient-
mediated activation of nuclear receptors leads to the induction of
different pathways involved in a wide range of cellular functions.
A member of this transcription factor family, namely, the
peroxisome proliferator-activated receptor gamma (PPARγ), acts as
metabolic nuclear sensor in different cell types — adipocytes,
fibroblasts and myocytes — regulating the expression of several key
genes involved in glucose metabolism, adipocyte differentiation, lipid
oxidation, angiogenesis and inflammation [88,89]. PPARG gene
encodes different protein isoforms generated by different promoters
and alternative splicing [90,91]. The functional role of PPARγ is well
documented, and its nucleotide variations have been associated in
many studies, even though in a controversial extent, to metabolic
diseases such as T2DM, obesity and CVD [92,93]. Nevertheless, the
involvement of its polymorphisms in the genetic susceptibility toward
complex metabolic diseases is not yet clearly elucidated [94,95].

For instance, Pro12Ala, the well and more extensively studied SNP
in PPARG gene, has been associated with increased protection to the
development of T2DM and insulin resistance [96–100] and, more
recently, to decreased incidence of CVD [101]. Ala12 allele has been
also associated with a lower body mass index (BMI) in nonobese
subjects [96], although the studies are controversial [102–105].

Recent data have shown the interaction of modifying factors,
including diet and exercise,with the Pro12Ala SNP in the development
and also treatment of T2DM. In the Quebec Family Study, Ala12 allele
carriers did not respond to a higher fat intake, whereas, on the
opposite, Pro12 allele carriers responded with a gradual deterioration
of metabolic parameters, as well as an increase in BMI and waist
circumference [106]. This study suggests that the Ala12 allele protects
carriers against negative environment influences, such as high-fat diet
and lack of exercise.

The functional mechanism of Pro12Ala impact on metabolic
disorders is not yet known, although a minor influence on the
transcription of PPARγ target genes, has been shown [107]. However,
it has been postulated that Pro12Ala SNPmay itself not be responsible
for the regulation of transcription but could be in linkage disequili-
brium with a polymorphism in the promoter region [108].

To date, most of the studies have not considered putative
polymorphisms in the promoter in association with the Ala12,
whereas recent studies have analyzed SNPs in a putative E2 box
region in the PPARG promoter [92,93], suggesting that further
variations should be taken into account for this gene. Although not
in the promoter region, a silent SNP, C1431T in exon 6, also known as
His477His, has been described in linkage disequilibriumwith the Ala12
allele [109]. A small number of studies attempted to assess whether
common SNPs in PPARG are associated with differential response to
diets. Cecil et al. [110] demonstrated that responsiveness to dietary
components, in terms of body weight, might be genotype dependent.
Particularly, PPARG genotype is a significant factor in the individual
ability to compensate for short-term energy intake, such that 1431T
allelewas associatedwith poor energy compensation [110].Moreover,
1431T allele was associated with poor satiety, mostly explained in the
context of leptin secretion and action, representing a potential
mechanism by which this nucleotide variant regulates eating
behavior. Leptin down-regulation in the adipocytes — mediated by
PPARγ agonists — and low leptin levels influence several neuroendo-
crine responses to regulate and influence energy balance [111].

Overall, these evidences strongly indicate that PPARγ is a direct
link between energy balance, control of appetite and adiposity,
suggesting this is probably the most critical genetic factor in
predisposing to positive energy balance and, ultimately, to obesity.

3. Genes and metabolism: new technological and
clinical approaches

Metabolism mainly represents the expression of a balance in the
anabolic and catabolic processes. In the past years, the phenotypic
expression of metabolic changes has been measured through the



Fig. 2. Novel genomewide approaches in the nutritional genomics.
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evaluation of enzyme activity. To date, the genomic revolution has led
to the development of novel technologies and molecular tools
[112,113], useful for nutritional sciences, allowing a more precise
and accurate analysis of biochemical alterations [114].

3.1. Bioinformatics and novel molecular biology techniques

Bioinformatics tools, applied to genomics, proteomics and meta-
bolomics, have already been used for the study of gene–nutrient
interactions at cellular, individual and population level [115]. In this
postgenomics era, traditional DNA sequencing and genotyping are
rapidly shifting toward novel high-throughput approaches, based on
microarray technologies, which allow to obtain gene expression
profiles of thousands of genes in a single experiment, or proteomics,
which currently enables to study the complete collection of proteins
in a cell or tissue at any given time (Fig. 2) [116,117]. As advancement
in bioinformatics occurs, the importance of changes in mRNA
expression should help to predict disease risk and to identify
individuals that could benefit from dietary change. This does not
mean that mRNA level variations could be useful causal markers, but
rather, it might be that a pattern of expressed mRNAs changes in a
characteristic and reproducible way [118]. To date, commercial
platforms, available for microarray analysis, allow researchers to
have a highly reproducible, fast and powerful tool to detect
differential gene expression in response to many exogenous stimuli
(i.e., dietary components). Discrimination power is a crucial endpoint
of this technology. By using probes with different nucleotide length
and labeling methods, mRNA detection can greatly improve; the
shortest is the probe, and the better discrimination power occurs
among highly similar and repetitive sequences. In contrast, the use of
longer probes provides a lower extent of discrimination, arisen by a
better sensitivity.

Knock-out mice models have often been used in order to identify
the mechanisms of action of bioactive dietary components. For
instance, the role of some compounds, such as sulforaphane and
lipoic acid, on the regulation of gene expression has been studied in
rodents. Wild-type and Nrf2-deficient mice fed with sulforaphane
have shown several downstream events, providing a more detailed
knowledge about the true biological response to this food component
[119,120]. In addition to the inability of up-regulating key enzymes,
such as glutathione S-transferase, NADP/quinone reductase, gamma-
glutamylcysteine synthetase and epoxide hydrolase, the selective
block of Nrf2 was also involved in the regulation of xenobiotic
metabolizing enzymes, antioxidants and glucuronidation/conjuga-
tion pathways. Similar studies have also been performed with
PPARA−/− mice, showing the role of this gene in the regulation of
lipid metabolism [121]. Furthermore, the effects of lipoic acid on gene
expression, in liver cells of rats fed high-fat diet, were evaluated by
microarray approach [122]. It was demonstrated that lipoic acid
supplementation, resulting in a decrease of lipid peroxidation, plasma
cholesterol, TGs and LDL cholesterol, was responsible for the up-
regulation of genes related to β-oxidation and free radical scavenger
enzymes, whereas those involved in cholesterol synthesis were
down-regulated [122].

Few studies have been performed in humans, where an important
barrier for the identification of molecular biomarkers is the
inaccessibility to tissue samples [23]. A noninvasive source of RNA,
to explore gene expression variations in response to human diet
intervention, was found in peripheral blood mononuclear cells
(PBMCs), suggesting these cells could represent a useful tool to
perform nutrigenomics studies [123].

Recently, we have used a similar approach to demonstrate the
protective effect of a dietary component, L-arginine, a precursor of
nitric oxide, on cultured endothelial progenitors infected with a
human pathogen, through the use of microarray analysis [124]. Our
results revealed that, as expected, several crucial genes involved in
immune and inflammatory response were differentially expressed
in cells infected with a human pathogen; interestingly, some of
them returned in a steady state when the cells were exposed to
sustained doses of L-arginine, thereby suggesting that such a
component could be added in the diet to reduce the detrimental
effects of a pathogen [124].

Microarray approach was recently used to show a down-
regulation of IL-8, a proinflammatory cytokine regulated by ROS, in
PBMC after weight loss induced by specific caloric restriction [125].
Interleukin 8 expression decrease was closely associated with the
diet-induced reduction in body fat mass, suggesting that IL-8 mRNA
levels could be a good indicator of variations in body fat percentage.
Another study on gene expression of PBMCs, from healthy humans
after fasting, revealed that more than 1350 genes displayed changes
at a threshold level of 1.4-fold, and many of them were involved in
fatty acid oxidation [126]. By using this approach, a large subset of
genes was identified as a molecular target of the nuclear receptor
PPAR-α, and these results were also confirmed on ex vivo PBMC.

Althoughmost of themicroarray analyses have been performed on
animal models or cultured cells, the number of human studies in
which microarray has been used to assess the biological effects of
dietary chemicals is rapidly growing.

Currently, the most crucial issue in all chip-based mRNA profiling
approaches is the analysis of the data sets and their interpretation.
These analyses, mainly providing lists of significant genes with
related P values, are not sufficient to fully understand the underlying
biology of metabolic adaptations. A single gene, although signifi-
cantly up- or down-regulated, does not necessarily have any
physiological meaning. The great challenge is how to correctly
analyze the wide number of genes, whose expression can be
modified by dietary components. The strategy of performing a
hierarchical cluster analysis appears to be the most commonly used
in order to minimize the significance of a particular gene in explain-
ing the overall response [120].
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Moreover, since microarray technologies only give a point-in-time
comparison, the “overinterpretation fear” becomes a real possibility.
It has been recognized since many years that adaptive processes
occur after the ingestion of foods or components in several metabolic
pathways. Thus, the quantity and, above all, the duration of exposure
to a specific dietary chemical are critical parameters to consider when
evaluating one or more sets of microarray data. A further possibility
to determine which gene or subset of genes are involved in (or
regulated by) the metabolism of dietary components comes from
another innovative technique, the RNA interference. By using this
technique, investigators systematically disrupt the expression of
target genes and observe the resulting phenotype. For instance, this
approach has led to the identification of a core set of fat regulatory
genes and pathway-specific fat regulators in the worm model system
Caenorhabditis elegans [127]. Likewise, the same technological
approach has been used to identify sites of action of isothiocyanate
compounds, such as sulforaphane, arising from broccoli and other
related foods [128].

Since transcriptome data, deriving from both microarray and RNA
interference techniques, become available, it should be possible to
identify molecular targets responsible for metabolic disorders onset,
allowing physicians to treat obesity and other detrimental conditions
by using foods or their bioactive components.

In response to the availability of high-throughput genome and
transcriptome technologies, another promising field of research, the
proteomics, has emerged, with the aim of developing and applying
methodologies to accelerate the functional analysis of proteins.
Usually, the strategies used in proteomics studies can be divided in
two main categories with complementary objectives: (1) a global
characterization of protein expression in a cell, tissue or organ [129]
and (2) the global characterization of protein function. The great
potential of proteomics in the nutritional science is the possibility to
deliver biomarkers for nutritional intervention and individual
disposition, assessing the nutritional status at a molecular level
[118]. Combining gene and protein expression profiling represents a
useful and complete approach for identifying the effects of dietary
components on human cells.

A growing number of studies have employed proteomics, even in
combination with microarray analysis, to address biomarkers for diet
protection against CVD, inflammation and cancer [130,131]. Nutrient
deficiencies, for instance, by force-feeding rats with a zinc-deficient
diet, have been used in order to analyze the hepatic transcriptome,
proteome and lipidome. By combining these complementary
approaches, Dieck et al. [132] show that a zinc-deficient nutritional
regimen leads to dramatically altered expression levels of a large
number of genes coding for key enzymes in hepatic glucose and also
lipid metabolism, thus, causing liver lipids accumulation and chronic
hepatic inflammation [132]. Steady-state levels of the mRNAs
encoding for enzymes required for hepatic triacylglycerol turnover
and β-oxidation of fatty acids were reduced, whereas those of de novo
lipogenesis displayed increased levels.

Furthermore, increased vegetable intake was shown to drive a
differential gene expression in the colon of healthy mice [133]. The
proteomics approach allowed the identification of six proteins with
altered expression levels, suggesting a putative protective role in
colorectal cancer.

Although these novel technologies and techniques are providing a
large amount of useful data to researchers— appearing quite unlimited
if considering cell lines or available model organisms — there are
evident limitations toward their use in human studies. The analysis of
gene expression patterns is restricted by the poor availability of ex
vivo vital primary cells or human tissues for analysis, and also by the
ethical issues concerning the treatment of human tissues.

However, only a multidisciplinary approach, able to combine all
these innovative techniques, will allow researchers and clinicians to
understand the effects of single nutrient — or a dietary pattern —

on the metabolic behavior of cells, on organs and, in turn, on the
whole organism.

3.2. Genetic testing in modern nutrition: is it worth it?

It has been established that nutrition represents the most
important, widespread and long-term acting environmental factor,
and that dietary components are able to modify, impair or improve
the likelihood of developing a metabolic disorder (T2DM, obesity,
CVD), exerting their effects on the genetic background. Since the last
years, it has been shown that the same dietary recommended
guidelines could not be applied to the whole population without
inducing massive mistakes [134].

In this scenario, the “traditional” nutrition and its limitation for the
“classical” dietary approach are slowly being replaced by a “modern”
concept of nutrition, turning the attention toward open-minded
horizons. In particular, the awareness that responses to a bioactive
dietary chemical greatly vary among individuals has claimed much
attention to the genetic background and its interaction with
nutrients. This evidence has smoothed the way for the spreading of
hundreds of companies, taking into account the potential of
molecular nutrition research and its long-term goal of tailored
nutrition [135]. In particular, direct-to-consumer genetic testing
development and purchase represent a rapidly growing market all
over the industrialized countries [136]. The idea is that everyone, by
easily collecting at home the DNA by rubbing the inside of the mouth
with a swab, can receive, in a noninvasive cost-effective manner,
information about his own genetic predisposition to develop such a
disease (T2DM, obesity, CVD).

To date, the most complete DNA test available examines the
individual nucleotide variations — common SNPs and insertions/
deletions — in about 30 genes, shown to play major roles in human
health, possibly predisposing to the onset of chronic disorders (see for
details Table 3). These genes, belonging to different pathways, include
detoxification and antioxidant activities, insulin sensitivity, inflam-
mation, tissue repair, bone and cartilage formation/repair, glucose
and lipid metabolism. DNA test results are combined to other
information derived from a lifestyle questionnaire, resulting in
personalized, realistic steps designed to improve and/or maintain
the good health status. A personal report that evaluates the current
lifestyle, according to the results of the DNA analysis, is what the
companies deliver to the genetic test user. It mainly contains dietary
recommendations based on the testing results, indicating a specific
nutritional supplement advice, the personal diet and lifestyle advice
for each tested gene.

However, there are very few randomized clinical trials that
actually prove efficacy for any health intervention, and many of
them tend to consider the effect of dietary components on a single
gene, measuring a biomarker of the disease, rather than considering a
disease endpoint [137]. Interesting and exciting preliminary results
have been accomplished [122,138–140], but even more studies are
needed. Moreover, although in the postgenomic era, it could appear a
limitation to examine few polymorphisms in about 1% of the total
human genes, an individual whole genome sequence is still too
expensive and difficult to analyze [141].

Last but not least, there is a common perception that the results of
a genetic test, indicating the possible predisposition to develop a
disease, even for nutrition-based pathologies, may cause shock and
psychological scars [136]. Very little is known on how people could
respond to the results of a direct-to-consumer genetic test that may
reveal an increased susceptibility to the onset of complex diseases.
The main question is whether awareness of a positive test result
would be enough to motivate people to change their lifestyle or
would it work in the opposite way.



Table 3
Direct-to-consumer nutrigenetic test sample

Gene pathway Gene symbol SNP Nutritional
intervention

Alcohol metabolism ADH1B
ADH1C
ALDH2

Arg369Cis
Arg47His
Ile349Val
Glu487Lys

+
−
+
+

Antioxidant defense SOD2
SOD3
PON1
EPHX1

−28CNT
760CNG
Gln192Arg
Leu55Met
Tyr113His

−
+
+
−
−

Bone homeostasis COLA1
IL-6
TNFA

2046GNT
−174GNC;
−634GNC
−308GNA

−
−
+

Ca2+ and vitamin D
pathway

VDR TaqI; FokI
BsmI

+
−

Cholesterol metabolism APOA5
CEPT
LPL
LIPC

−1131TNC;
56CNG
279GNA
1595CNG
−250GNA;
−514CNT

+
−
−
+

Folic acid metabolism MTHFR 677CNT;
1298ANC

+

Glucose/lipid metabolism PPARG Pro12Ala −
Homocysteine removal

and vitamin
B6 metabolism

MTR
CBS

2756ANG
699CNT

−
−

Inflammation IL-6
TNFA

−174GNC
−308GNA

+
+

Phase I detoxification CYP1A1
CYP1A2

2455ANG
1B; 1E; 1F

+
+

Phase II detoxification GSTM1
GSTP1
GSTT1

deletion
313ANG;
341CNT
deletion

+
+
+

Salt sensitivity AGT Met235Thr −
TG metabolism APOC3 3175CNG +
Vascular/heart function ACE

NOS3
Deletion
894GNT

+
+

Vitamin B12 metabolism MTRR 66ANG +

The table shows the genes and the nucleotide variations within these, screened by
common direct-to-consumer nutrigenetic tests. The effect of a specific SNP may be
protective or predisposing toward the onset of a disease phenotype. The presence of a
so-called protective gene variant does not require any nutritional supplementation
(indicated as “−” in the table). On the opposite, in the presence of a predisposing SNP,
detailed, genome-tailored nutritional — and lifestyle — recommendation are provided
to the consumer (indicated as “+” in the table).
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3.3. Copy number variations: impact on human common disorders
and perspectives

Genetic variations in the human genome may take many forms,
from wide microscopically visible chromosome abnormalities to
single-nucleotide changes [142]. Recently, several studies have
disclosed many submicroscopic copy number variations (CNVs) of
DNA fragments, ranging from kilobases to megabases [142–146].
Innovative molecular technologies have confirmed that most of
individuals carry far higher than expected numbers of CNVs, many of
which have not been detected by previously used mutation detection
or cytogenetic techniques [147]. Large deletions, insertions and
duplications, collectively termed CNVs, or copy number polymorph-
isms, have been found in all humans and primates [148,149].

Copy number variations have emerged as a dominant force,
determining both genetic and phenotypic variations [145]. Currently,
it has been estimated that in terms of total number of base pairs of
genetic difference between two individuals, CNVs contribute approx-
imately twice the amount than SNPs [150,151]. Variations in gene
copy number and gene fragments lead to multiple effects on
phenotype [152]. It is interesting to note that most of CNVs appear
to be enriched within genes involved in molecular–environmental
interactions, possibly influencing immune defense and disease
susceptibility of humans [153].

CNVs may contribute to human disease in several different ways
[147,148]. It has been postulated that CNVs may act by directly
affecting gene dosage and gene expression. Thus, due to their effect on
gene dosage, CNVs are unlikely associated with mendelian diseases,
whereas it is more likely they play a role in late onset diseases ormore
complex common diseases [154]. Moreover, evidence indicates that
CNVs are associated with immunological or environmental sensor
genes [149], thereby suggesting that variation in gene expressionmay
directly play a role in complex diseases. For example, CNVs can cause
statistically significant changes in mRNA levels of a catabolic enzyme,
associated with nutrient intake in humans [155].

Particularly, to date, there is only one published study assessing a
direct relationship between gene copy number and the amount of
encoded protein. Indeed, Perry et al. [155] have recently demonstrat-
ed that human salivary amylase gene, AMY1, which has extensive
CNVs [143,156], shows a characteristic pattern of expression,
consistent with a history of diet-related selection pressures, depend-
ing on starchy food consumption of humans. However, although
AMY1 locus is one of the most variable in the human genome, recent
genomewide analysis identified about 1500 CNVs among 270
phenotypically normal individuals [142], and many more are likely
to be discovered.

Thus, it is reasonable to hypothesize that, as well as documented
for the AMY1 gene, strong diet-related selection pressures may have
influenced, through gene CNVs, several other genes along the human
genome evolution.

4. Conclusions

Past and also current dietary guidelines do not consider the
differences in the individual response to a diet, reflecting an impaired
efficacy of these dietary recommendations. In the last decade,
nutrigenomics has claimed the possibility of reaching substantial
advances in public health through a low-cost approach of preventive
medicine. Adjusting human metabolism using the diet in a “genome-
and age-specific” way, without the support of any drug, may
minimize the risk and the onset of several degenerative diseases
associated with ageing, decreasing public health costs.

To date, a growing number of studies have described SNPs that
modulate the individual response to a specific dietary compound,
explaining how gene–diet interactions influence the metabolism.
Furthermore, the postgenomic revolution and the development of
innovative genomewide technologies and molecular tools for rapid
genetic testing have led, also in the nutritional science, to more
accurate and promising analyses. However, although current
evidence, from basic research and ongoing clinical trials, has
shown that the analysis of nutrient–gene interactions represents a
promising field, it is not enough to start making specific tailored
nutritional recommendations based on individual genetics. It is
critical that preliminary studies, briefly summarized in this review,
undergo further replication in many populations. This purpose must
be addressed through wider and better-characterized population
studies, considering an adequate size, in order to have sufficient
statistical power. Moreover, careful attention should be addressed to
genotype/phenotype correlation. This imperative could be achieved
only with the collaboration of experts in different fields, ranging
from biologist and bioinformatics to food and nutrition professionals
[157]. Moreover, traditional nutrition scientists should understand
the potential of molecular nutrition research in animal models to
provide insights into human nutrition. Finally, food industry should
recognize, and take into account, the promising steps and the always
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more relevant role of nutrigenomics in developing an evidence-
based nutrition.

In conclusion, we believe that in the coming years, most of the
individuals affected by chronic metabolic disorders, displaying
dramatic heterogeneity in response to the recommended therapeutic
diets, will benefit from individually adjusted dietary recommenda-
tions. A modern concept of nutrition, based on a deep and complete
individual genetic and molecular knowledge, will represent the only
viable way to reach this future perspective.
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